On Brooks' Theorem for Sparse Graphs

نویسنده

  • Jeong Han Kim
چکیده

Let G be a graph with maximum degree ∆(G). In this paper we prove that if the girth g(G) of G is greater than 4 then its chromatic number, χ(G), satisfies χ(G) ≤ (1 + o(1)) ∆(G) log ∆(G) where o(1) goes to zero as ∆(G) goes to infinity. (Our logarithms are base e.) More generally, we prove the same bound for the list-chromatic (or choice) number: χ l (G) ≤ (1 + o(1)) ∆(G) log ∆(G) provided g(G) > 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brooks' theorem on powers of graphs

We prove that for k ≥ 3, the bound given by Brooks’ theorem on the chromatic number of k-th powers of graphs of maximum degree ∆ ≥ 3 can be lowered by 1, even in the case of online list coloring.

متن کامل

Restricted List Colorings of Graphs

A graph is called to be uniquely list colorable, if it admits a list assignment which induces a unique list coloring. We study uniquely list colorable graphs with a restriction on the number of colors used. In this way we generalize a theorem which characterizes uniquely 2–list colorable graphs. We introduce the uniquely list chromatic number of a graph and make a conjecture about it which is a...

متن کامل

A Fractional Analogue of Brooks' Theorem

Let ∆(G) be the maximum degree of a graph G. Brooks’ theorem states that the only connected graphs with chromatic number χ(G) = ∆(G) + 1 are complete graphs and odd cycles. We prove a fractional analogue of Brooks’ theorem in this paper. Namely, we classify all connected graphs G such that the fractional chromatic number χf (G) is at least ∆(G). These graphs are complete graphs, odd cycles, C 2...

متن کامل

A list version of Dirac's theorem on the number of edges in colour-critical graphs

One of the basic results in graph colouring is Brooks' theorem [R.

متن کامل

An inequality for the group chromatic number of a graph

We give an inequality for the group chromatic number of a graph as an extension of Brooks’ Theorem. Moreover, we obtain a structural theorem for graphs satisfying the equality and discuss applications of the theorem. Keywords— Brooks’ Theorem, Group coloring, Group chromatic number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1995